

×

School of Packaging

B.S. degree

Master of Science

Doctor of Philosophy

Teaching/education: B.S.

Science and Math requirements for all students (15 credits)

- General and Organic Chemistry
- Physics I and II (meets MSU ISP requirements)
- Calculus I and II
- Statistics
- Biology, Microbiology, or Food Safety
- Core Curriculum requirements all students (32 credits)
 - Technical principles for packaging
 - Materials (glass, plastic, paper and metals in packaging)
 - Computer applications
 - Packaging processes & systems
 - Distribution dynamics
 - Design and prototyping
 - Life Cycle Analysis & Environmental impacts
 - Economic Factors of Packaging

PACKAGING ELECTIVES (at least 9 credits)

- Printing & Graphics
- RFID and Robotics

- Environmental issues
- Virtual Package Design
- Medical packaging
- Food packaging
- Automotive and Industrial Packaging
- Packaging laws and regulations

Business cognate (At least 12 credits)

- Advertising
- Business Law
- Financial management
- Marketing
- Management skills
- Supply chain management
- Science and Math Requirements

Research Interests

> Interactions with the consumer

- Label performance and compliance
- Pharmaceutical and medical devices
- Communication
- Regulatory compliance and concerns
- Marketing with packaging system
- Virtual design of packaging systems

> Interactions with the product

- Permeability of gases and vapor
- Active packaging
- Migration and scalping

New packaging materials

- Sustainable packaging materials
- > New indicators for packaging sustainability
- Packaging system performance

Packaging processes

- Packaging logistics and supply chains
- Impact of packaging processes on the finished product's business plan
- Quality design as applied to packaging
- Logistics and Supply Chain (green)

•

> Interactions with the environment:

- Sustainability concepts and methodology
- LCA, bio-degradability, recyclability, etc..
- Distribution performance
- Reusable packaging system analysis

School of Packaging Career Fair January 28th & 29th 2015

PACKAGE COST GREATER THAN INGREDIENT COST

• BEER	510%
• Prepared Foods	214%
• CHEWING GUM	193%
• Soft Drinks	189%
• BREAKFAST CEREALS	164%
• Soups, Baby, Others	147%
• FROZEN DINNERS	141%
• Pet Foods	122%
• DISTILLED SPIRITS	101%
• CANNED FRUITS & VEGETABLES	101%

Career Earnings

Package Cost Greater Than Ingredie	NT COST
• Beer	510%
• Prepared Foods	214%
• Chewing Gum	193%
• Soft Drinks	189%
• Breakfast Cereals	164%
• Soups, Baby, Others	147%
• FROZEN DINNERS	<u>1</u> 41%
• Pet Foods	122%
• DISTILLED SPIRITS	101%
• CANNED FRUITS & VEGETABLES	101%

Food & Beverage	\$59,443
Pharma/Medical	\$52,575
Consumer Prod.	\$57,103
Cosmetics	\$52,210
Home/Furniture	\$52,000
Automotive	\$46,000
Electronics	\$57,250
Suppliers	\$46,954
Other	\$51,001

DIANA TWEDE SUSAN E. M. SELKE DONATIEN-PASCAL KAMDEM DAVID SHIRES

SUCCESS

It's not always what you see

MECHICAN STATE UNIVERSITY

Le bois m'emballe et toi?

Donatien Pascal Kamdem School of Packaging Michigan State University East Lansing Michigan USA <u>WWW.msu.edu</u> kamdem@msu.edu

2016 Packaging Innovation &Intelligent Manufacture Week Ningbo China Nov 1st to Nov 5th, 2016

Emballage

Emballages Bois

Emballages legers

• Cageots-barquettes... (primaires)

Emballages lourds Transport/Distribution/logistique

42-19750420

Emballage

- Primaire
 - Contact direct avec le produit
- Secondaire
 - Protection-unite d'achat
- Tertiaire
 - Unite logistique (transport-distribution-stockage)

orld

Emballage bois

Especes de bois

Warehouse-Storage

<u>Wood</u>:

most common Approximately 30-42 lbs. \$15 - \$25 Heat treated for export

Engineered wood products: plywood for solid deck particle board Fiberboard

Thermoform Plastic

<u>Metal</u>: aluminum military for explosives

<u>Corrugated</u>: light weight about 10 lbs, good for one or two trips

Pallet Types

Criteres de selection

- Densite
- Proprietes mecaniques
- Clouage
- fendillement
- Couleur
- Odeur
- Presence des extractibles et autres resins
- Cout (75 a 85% le prix)

Pallets-bois

- 2 billions wooden pallets in US yearly

 New (400 millions)
 Recycled (1.6 billion)
- About 12 billion dollar industry
- 95% : wood pallets

Problems

- Images (public perception)
- Structural Design
 - Especes de bois
 - Joint (Adhesion-Metal...)
- Durabilite
 - Duree de vie (4 a 5 ans)
 - Design
 - Metal
- Hygiene et biologique

 Bacteries-Microbes-bleuissement-insectes..
- Reparation-Recyclage-Reutilisation

Defis

- Standardisation des pallettes (Logistique...)
- Humidite
- Ecosystem Protection
- The ISPM15
 - Sans ecorce-56C-30minutes (export et import)
- Proprietes mecaniques
- Planches avec defauts
- Planches recycles
- Performance de la structure

Reusable-Recyclable-Upcyclable

Unit load

- Pallets: \$15-\$20
- Stabilisateurs: \$5
- Produits: 50-\$100,000
- Palette vs Produits?

Poids maximum?

• PDS

3.25

<u>_</u> 3.25

3.25

- 3.25

3.25

Average Handling	g and Tre	atment, Med	lium-D	uty Loads	Dry E	nvironment	(EMC <= 19%)	
Predicted Service Life	fe: 9 C)	/cles		Predicte	d Cycle	es until F	irst Repair:	3
	Resu	ilts from H	landli	ng Cycle	Simul	ation		
Pallet Components		Cycles To First Repair	Rep	Cycles To First lacement	Numb of Time Replac	er Limit Palle 6 Servio red Life	5 Rela t Componen xe dur Simul	itive It Damage Ing Iation
Top Leadboards	(2)	3		5	1	Yes		
Top InteriorBoards	(5)							
Bottom Leadboards	(2)	3		5	1	Yes		
Bottom InteriorBoards	(3)							
Exterior Stringers	(2)	4		9				
Interior Stringers	(1)							
llet Physical Proper	ty Ana	alysis						
		At Manufac	ture	At 255	MC	At 19% M	At 15% MC	At 12%

imensional Change due to Wood Drying			
Component	Original Dimension	Shrinkage from Manufacture to 19% MC	Shrinkage from Manufactu to 15% MC
Top Deckboards	0.625 In. Thickness	0.014 ln. (+i- 0.004 ln.)	0.020 ln. (+/- 0.006 l
	3.500 In. Width	0.078 ln. (+i- 0.023 ln.)	0.113 ln. (+/- 0.033 l
	5.500 In. Width	0.123 ln. (+i- 0.036 ln.)	0.178 ln. (+/- 0.052 l
Stringers	3.500 In. Height	0.078 ln. (+/- 0.023 ln.)	0.113 ln. (+/- 0.033 li
	1.375 In. Width	0.031 ln. (+/- 0.009 ln.)	0.044 ln. (+/- 0.013 li
Bottom Deckboards	0.625 In. Thickness	0.014 ln. (+/- 0.004 ln.)	0.020 ln. (+/- 0.006 li
	3.500 In. Width	0.078 ln. (+/- 0.023 ln.)	0.113 ln. (+/- 0.033 li
	5.500 In. Width	0.123 ln. (+/- 0.036 ln.)	0.178 ln. (+/- 0.052 li

THE ECONOMICS OF CLIMATE CHANGE MITIGATION OPTIONS IN THE FOREST SECTOR

INTERNATIONAL ONLINE CONFERENCE | 6-27 FEBRUARY, 2015

Wood is good

Donatien Pascal Kamdem School of Packaging Michigan State University East Lansing Michigan www.msu.edu <u>kamdem@msu.edu</u> kamdem@anr.msu.edu

Food and Agriculture Organization of the United Nations

THE ECONOMICS OF CLIMATE CHANGE MITIGATION OPTIONS IN THE FOREST SECTOR

INTERNATIONAL ONLINE CONFERENCE | 6-27 FEBRUARY, 2015

Wooden pallets, barrels, crates, boxes, baskets and containers in Packaging Logistics: Benefits for climate change mitigation?

Donatien Pascal Kamdem School of Packaging Michigan State University East Lansing Michigan 48824 USA

Food and Agriculture Organization of the United Nations

Thank You!

